首页> 外文OA文献 >Isoperimetric Sequences for Infinite Complete Binary Trees, Meta-Fibonacci Sequences and Signed Almost Binary Partitions
【2h】

Isoperimetric Sequences for Infinite Complete Binary Trees, Meta-Fibonacci Sequences and Signed Almost Binary Partitions

机译:无限完全二叉树的等周序列,   meta-Fibonacci序列和签名的几乎二进制分区

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we demonstrate connections between three seemingly unrelatedconcepts. (1) The discrete isoperimetric problem in the infinite binary tree with allthe leaves at the same level, $ {\mathcal T}_{\infty}$: The $n$-th edge isoperimetric number $\delta(n)$ is defined to be$\min_{|S|=n, S \subset V({\mathcal T}_{\infty})} |(S,\bar{S})|$, where$(S,\bar{S})$ is the set of edges in the cut defined by $S$. (2) Signed almost binary partitions: This is the special case of thecoin-changing problem where the coins are drawn from the set ${\pm (2^d - 1): $d$ is a positive integer}$. The quantity of interest is$\tau(n)$, the minimum number of coins necessary to make change for $n$ cents. (3) Certain Meta-Fibonacci sequences: The Tanny sequence is defined by$T(n)=T(n{-}1{-}T(n{-}1))+T(n{-}2{-}T(n{-}2))$ and the Conolly sequence isdefined by $C(n)=C(n{-}C(n{-}1))+C(n{-}1{-}C(n{-}2))$, where the initialconditions are $T(1) = C(1) = T(2) = C(2) = 1$. These are well-known "meta-Fibonacci" sequences. The main result that ties these three together is the following: $$ \delta(n)= \tau(n) = n+ 2 + 2 \min_{1 \le k \le n} (C(k) - T(n-k) - k).$$ Apart fromthis, we prove several other results which bring out the interconnectionsbetween the above three concepts.
机译:在本文中,我们演示了三个看似无关的概念之间的联系。 (1)无限二叉树中所有叶子都在同一级别$ {\\ mathcal T} _ {\\ infty} $的离散等距问题:第n个边等距数$ \ delta(n)$为定义为$ \ min_ {| S | = n,S \ subset V({\ mathcal T} _ {\ infty})} |(S,\ bar {S})| $,其中$(S,\ bar {S})$是$ S $定义的切割中的一组边。 (2)有符号的几乎二进制的分区:这是换硬币问题的特例,其中硬币是从集合$ {\ pm(2 ^ d-1)中抽取的:$ d $是一个正整数} $。利息数量为$ \ tau(n)$,这是进行$ n $美分兑换所需的最小硬币数量。 (3)某些元斐波那契数列:Tanny数列由$ T(n)= T(n {-} 1 {-} T(n {-} 1))+ T(n {-} 2 {- } T(n {-} 2))$和Conolly序列由$ C(n)= C(n {-} C(n {-} 1))+ C(n {-} 1 {-} C定义(n {-} 2))$,其中初始条件为$ T(1)= C(1)= T(2)= C(2)= 1 $。这些是众所周知的“元斐波那契”序列。将这三个联系在一起的主要结果如下:$$ \ delta(n)= \ tau(n)= n + 2 + 2 \ min_ {1 \ le k \ le n}(C(k)-T(nk )-k)。$$除此之外,我们还证明了其他一些结果,这些结果带出了以上三个概念之间的相互联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号